10,614 research outputs found

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    On the existence of a variational principle for deterministic cellular automaton models of highway traffic flow

    Full text link
    It is shown that a variety of deterministic cellular automaton models of highway traffic flow obey a variational principle which states that, for a given car density, the average car flow is a non-decreasing function of time. This result is established for systems whose configurations exhibits local jams of a given structure. If local jams have a different structure, it is shown that either the variational principle may still apply to systems evolving according to some particular rules, or it could apply under a weaker form to systems whose asymptotic average car flow is a well-defined function of car density. To establish these results it has been necessary to characterize among all number-conserving cellular automaton rules which ones may reasonably be considered as acceptable traffic rules. Various notions such as free-moving phase, perfect and defective tiles, and local jam play an important role in the discussion. Many illustrative examples are given.Comment: 19 pages, 4 figure

    Reliable Cellular Automata with Self-Organization

    Full text link
    In a probabilistic cellular automaton in which all local transitions have positive probability, the problem of keeping a bit of information indefinitely is nontrivial, even in an infinite automaton. Still, there is a solution in 2 dimensions, and this solution can be used to construct a simple 3-dimensional discrete-time universal fault-tolerant cellular automaton. This technique does not help much to solve the following problems: remembering a bit of information in 1 dimension; computing in dimensions lower than 3; computing in any dimension with non-synchronized transitions. Our more complex technique organizes the cells in blocks that perform a reliable simulation of a second (generalized) cellular automaton. The cells of the latter automaton are also organized in blocks, simulating even more reliably a third automaton, etc. Since all this (a possibly infinite hierarchy) is organized in ``software'', it must be under repair all the time from damage caused by errors. A large part of the problem is essentially self-stabilization recovering from a mess of arbitrary size and content. The present paper constructs an asynchronous one-dimensional fault-tolerant cellular automaton, with the further feature of ``self-organization''. The latter means that unless a large amount of input information must be given, the initial configuration can be chosen homogeneous.Comment: 166 pages, 17 figure

    Nonequilibrium Phase Transitions in (1+1)-Dimensional Quantum Cellular Automata with Controllable Quantum Correlations

    Get PDF
    Motivated by recent progress in the experimental development of quantum simulators based on Rydberg atoms, we introduce and investigate the dynamics of a class of (1+1)-dimensional quantum cellular automata. These non-equilibrium many-body models, which are quantum generalisations of the Domany-Kinzel cellular automaton, possess two key features: they display stationary behaviour and non-equilibrium phase transitions despite being isolated systems. Moreover, they permit the controlled introduction of local quantum correlations, which allows for the impact of quantumness on the dynamics and phase transition to be assessed. We show that projected entangled pair state tensor networks permit a natural and efficient representation of the cellular automaton. Here, the degree of quantumness and complexity of the dynamics is reflected in the difficulty of contracting the tensor network

    Quantum Field as a quantum cellular automaton: the Dirac free evolution in one dimension

    Full text link
    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be effi- ciently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of an hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics.Comment: 21 pages, 4 figure

    Recrystallization simulation by use of cellular automata

    Get PDF
    This report is about cellular automaton models in materials science. It gives an introduction to the fundamentals of cellular automata and reviews applications particularly for predicting recrystallization phenomena. Cellular automata for recrystallization are typically discrete in time, physical space, and orientation space and often use quantities such as dislocation density and crystal orientation as state variables. They can be defined on a regular or non-regular 2D or 3D lattice considering the first, second, and third neighbor shell for the calculation of the local driving forces. The kinetic transformation rules are usually formulated to map a linearized symmetric rate equation for sharp grain boundary segment motion. While deterministic cellular automata directly perform cell switches by sweeping the corresponding set of neighbor cells in accord with the underlying rate equation, probabilistic cellular automata calculate the switching probability of each lattice point and make the actual decision about a switching event by evaluating the local switching probability using a Monte Carlo step. Switches are in a cellular automaton algorithm generally performed as a function of the previous state of a lattice point and the state of the neighboring lattice points. The transformation rules can be scaled in terms of time and space using for instance the ratio of the local and the maximum possible grain boundary mobility, the local crystallographic texture, the ratio of the local and the maximum occurring driving forces, or appropriate scaling measures derived from a real initial specimen. The cell state update in a cellular automaton is made in synchrony for all cells. The present report will particularly deal with the prediction of the kinetics, microstructure, and texture of recrystallization. Couplings between cellular automata and crystal plasticity finite element models will be also discussed

    Revisiting the Rice Theorem of Cellular Automata

    Full text link
    A cellular automaton is a parallel synchronous computing model, which consists in a juxtaposition of finite automata whose state evolves according to that of their neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite sequences of cell states. The limit set of the cellular automaton is the set of configurations which can be reached arbitrarily late in the evolution. In this paper, we prove that all properties of limit sets of cellular automata with binary-state cells are undecidable, except surjectivity. This is a refinement of the classical "Rice Theorem" that Kari proved on cellular automata with arbitrary state sets.Comment: 12 pages conference STACS'1

    Statistical Mechanics of Surjective Cellular Automata

    Get PDF
    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.Comment: 50 pages, 7 figure
    • …
    corecore